Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Basic Res Cardiol ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724619

RESUMEN

Succinate accumulates during myocardial ischemia and is rapidly oxidized during reperfusion, leading to reactive oxygen species (ROS) production through reverse electron transfer (RET) from mitochondrial complex II to complex I, and favoring cell death. Given that connexin 43 (Cx43) modulates mitochondrial ROS production, we investigated whether Cx43 influences RET using inducible knock-out Cx43Cre-ER(T)/fl mice. Oxygen consumption, ROS production, membrane potential and coenzyme Q (CoQ) pool were analyzed in subsarcolemmal (SSM, expressing Cx43) and interfibrillar (IFM) cardiac mitochondria isolated from wild-type Cx43fl/fl mice and Cx43Cre-ER(T)/fl knock-out animals treated with 4-hydroxytamoxifen (4OHT). In addition, infarct size was assessed in isolated hearts from these animals submitted to ischemia-reperfusion (IR), and treated or not with malonate, a complex II inhibitor attenuating RET. Succinate-dependent ROS production and RET were significantly lower in SSM, but not IFM, from Cx43-deficient animals. Mitochondrial membrane potential, a RET driver, was similar between groups, whereas CoQ pool (2.165 ± 0.338 vs. 4.18 ± 0.55 nmol/mg protein, p < 0.05) and its reduction state were significantly lower in Cx43-deficient animals. Isolated hearts from Cx43Cre-ER(T)/fl mice treated with 4OHT had a smaller infarct size after IR compared to Cx43fl/fl, despite similar concentration of succinate at the end of ischemia, and no additional protection by malonate. Cx43 deficiency attenuates ROS production by RET in SSM, but not IFM, and was associated with a decrease in CoQ levels and a change in its redox state. These results may partially explain the reduced infarct size observed in these animals and their lack of protection by malonate.

2.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38673951

RESUMEN

Succinate dehydrogenase inhibition with malonate during initial reperfusion reduces myocardial infarct size in both isolated mouse hearts subjected to global ischemia and in in situ pig hearts subjected to transient coronary ligature. However, the long-term effects of acute malonate treatment are unknown. Here, we investigated whether the protective effects of succinate dehydrogenase inhibition extend to a reduction in scar size and adverse left ventricular remodeling 28 days after myocardial infarction. Initially, ten wild-type mice were subjected to 45 min of left anterior descending coronary artery (LAD) occlusion, followed by 24 h of reperfusion, and were infused during the first 15 min of reperfusion with saline with or without disodium malonate (10 mg/kg/min, 120 µL/kg/min). Malonate-treated mice depicted a significant reduction in infarct size (15.47 ± 3.40% of area at risk vs. 29.34 ± 4.44% in control animals, p < 0.05), assessed using triphenyltetrazolium chloride. Additional animals were then subjected to a 45 min LAD ligature, followed by 28 days of reperfusion. Treatment with a single dose of malonate during the first 15 min of reperfusion induced a significant reduction in scar area, measured using Picrosirius Red staining (11.94 ± 1.70% of left ventricular area (n = 5) vs. 23.25 ± 2.67% (n = 9), p < 0.05), an effect associated with improved ejection fraction 28 days after infarction, as determined using echocardiography, and an attenuated enhancement in expression of the pro-inflammatory and fibrotic markers NF-κB and Smad2/3 in remote myocardium. In conclusion, a reversible inhibition of succinate dehydrogenase with a single dose of malonate at the onset of reperfusion has long-term protective effects in mice subjected to transient coronary occlusion.


Asunto(s)
Malonatos , Infarto del Miocardio , Daño por Reperfusión Miocárdica , Succinato Deshidrogenasa , Remodelación Ventricular , Animales , Malonatos/farmacología , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/patología , Ratones , Succinato Deshidrogenasa/metabolismo , Succinato Deshidrogenasa/antagonistas & inhibidores , Masculino , Remodelación Ventricular/efectos de los fármacos , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/patología , Cicatriz/patología , Cicatriz/tratamiento farmacológico , Ratones Endogámicos C57BL
3.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38338818

RESUMEN

TRPV4 channels, which respond to mechanical activation by permeating Ca2+ into the cell, may play a pivotal role in cardiac remodeling during cardiac overload. Our study aimed to investigate TRPV4 involvement in pathological and physiological remodeling through Ca2+-dependent signaling. TRPV4 expression was assessed in heart failure (HF) models, induced by isoproterenol infusion or transverse aortic constriction, and in exercise-induced adaptive remodeling models. The impact of genetic TRPV4 inhibition on HF was studied by echocardiography, histology, gene and protein analysis, arrhythmia inducibility, Ca2+ dynamics, calcineurin (CN) activity, and NFAT nuclear translocation. TRPV4 expression exclusively increased in HF models, strongly correlating with fibrosis. Isoproterenol-administered transgenic TRPV4-/- mice did not exhibit HF features. Cardiac fibroblasts (CFb) from TRPV4+/+ animals, compared to TRPV4-/-, displayed significant TRPV4 overexpression, elevated Ca2+ influx, and enhanced CN/NFATc3 pathway activation. TRPC6 expression paralleled that of TRPV4 in all models, with no increase in TRPV4-/- mice. In cultured CFb, the activation of TRPV4 by GSK1016790A increased TRPC6 expression, which led to enhanced CN/NFATc3 activation through synergistic action of both channels. In conclusion, TRPV4 channels contribute to pathological remodeling by promoting fibrosis and inducing TRPC6 upregulation through the activation of Ca2+-dependent CN/NFATc3 signaling. These results pose TRPV4 as a primary mediator of the pathological response.


Asunto(s)
Calcineurina , Insuficiencia Cardíaca , Canales Catiónicos TRPV , Remodelación Ventricular , Animales , Ratones , Calcineurina/metabolismo , Células Cultivadas , Fibrosis , Insuficiencia Cardíaca/metabolismo , Isoproterenol , Ratones Transgénicos , Miocitos Cardíacos/metabolismo , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Canal Catiónico TRPC6/genética , Canal Catiónico TRPC6/metabolismo , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Remodelación Ventricular/genética
4.
Sci Rep ; 13(1): 6907, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37106099

RESUMEN

Succinate is enhanced during initial reperfusion in blood from the coronary sinus in ST-segment elevation myocardial infarction (STEMI) patients and in pigs submitted to transient coronary occlusion. Succinate levels might have a prognostic value, as they may correlate with edema volume or myocardial infarct size. However, blood from the coronary sinus is not routinely obtained in the CathLab. As succinate might be also increased in peripheral blood, we aimed to investigate whether peripheral plasma concentrations of succinate and other metabolites obtained during coronary revascularization correlate with edema volume or infarct size in STEMI patients. Plasma samples were obtained from peripheral blood within the first 10 min of revascularization in 102 STEMI patients included in the COMBAT-MI trial (initial TIMI 1) and from 9 additional patients with restituted coronary blood flow (TIMI 2). Metabolite concentrations were analyzed by 1H-NMR. Succinate concentration averaged 0.069 ± 0.0073 mmol/L in patients with TIMI flow ≤ 1 and was significantly increased in those with TIMI 2 at admission (0.141 ± 0.058 mmol/L, p < 0.05). However, regression analysis did not detect any significant correlation between most metabolite concentrations and infarct size, extent of edema or other cardiac magnetic resonance (CMR) variables. In conclusion, spontaneous reperfusion in TIMI 2 patients associates with enhanced succinate levels in peripheral blood, suggesting that succinate release increases overtime following reperfusion. However, early plasma levels of succinate and other metabolites obtained from peripheral blood does not correlate with the degree of irreversible injury or area at risk in STEMI patients, and cannot be considered as predictors of CMR variables.Trial registration: Registered at www.clinicaltrials.gov (NCT02404376) on 31/03/2015. EudraCT number: 2015-001000-58.


Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Intervención Coronaria Percutánea , Infarto del Miocardio con Elevación del ST , Animales , Imagen por Resonancia Magnética , Infarto del Miocardio/patología , Reperfusión , Ácido Succínico , Porcinos , Resultado del Tratamiento
5.
Int J Mol Sci ; 23(8)2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35456920

RESUMEN

Despite advances in its treatment, heart failure remains a major cause of morbidity and mortality, evidencing an urgent need for novel mechanism-based targets and strategies. Myocardial hypertrophy, caused by a wide variety of chronic stress stimuli, represents an independent risk factor for the development of heart failure, and its prevention constitutes a clinical objective. Recent studies performed in preclinical animal models support the contribution of the Ca2+-dependent cysteine proteases calpains in regulating the hypertrophic process and highlight the feasibility of their long-term inhibition as a pharmacological strategy. In this review, we discuss the existing evidence implicating calpains in the development of cardiac hypertrophy, as well as the latest advances in unraveling the underlying mechanisms. Finally, we provide an updated overview of calpain inhibitors that have been explored in preclinical models of cardiac hypertrophy and the progress made in developing new compounds that may serve for testing the efficacy of calpain inhibition in the treatment of pathological cardiac hypertrophy.


Asunto(s)
Calpaína , Insuficiencia Cardíaca , Animales , Proteínas de Unión al Calcio , Calpaína/metabolismo , Cardiomegalia/tratamiento farmacológico , Insuficiencia Cardíaca/tratamiento farmacológico
6.
Aging Cell ; 21(3): e13564, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35233924

RESUMEN

Aged cardiomyocytes develop a mismatch between energy demand and supply, the severity of which determines the onset of heart failure, and become prone to undergo cell death. The FoF1-ATP synthase is the molecular machine that provides >90% of the ATP consumed by healthy cardiomyocytes and is proposed to form the mitochondrial permeability transition pore (mPTP), an energy-dissipating channel involved in cell death. We investigated whether aging alters FoF1-ATP synthase self-assembly, a fundamental biological process involved in mitochondrial cristae morphology and energy efficiency, and the functional consequences this may have. Purified heart mitochondria and cardiomyocytes from aging mice displayed an impaired dimerization of FoF1-ATP synthase (blue native and proximity ligation assay), associated with abnormal mitochondrial cristae tip curvature (TEM). Defective dimerization did not modify the in vitro hydrolase activity of FoF1-ATP synthase but reduced the efficiency of oxidative phosphorylation in intact mitochondria (in which membrane architecture plays a fundamental role) and increased cardiomyocytes' susceptibility to undergo energy collapse by mPTP. High throughput proteomics and fluorescence immunolabeling identified glycation of 5 subunits of FoF1-ATP synthase as the causative mechanism of the altered dimerization. In vitro induction of FoF1-ATP synthase glycation in H9c2 myoblasts recapitulated the age-related defective FoF1-ATP synthase assembly, reduced the relative contribution of oxidative phosphorylation to cell energy metabolism, and increased mPTP susceptibility. These results identify altered dimerization of FoF1-ATP synthase secondary to enzyme glycation as a novel pathophysiological mechanism involved in mitochondrial cristae remodeling, energy deficiency, and increased vulnerability of cardiomyocytes to undergo mitochondrial failure during aging.


Asunto(s)
Envejecimiento , Mitocondrias Cardíacas , ATPasas de Translocación de Protón Mitocondriales , Miocitos Cardíacos , Adenosina Trifosfato/metabolismo , Envejecimiento/metabolismo , Envejecimiento/fisiología , Animales , Calcio/metabolismo , Dimerización , Productos Finales de Glicación Avanzada/química , Productos Finales de Glicación Avanzada/metabolismo , Ratones , Mitocondrias Cardíacas/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , ATPasas de Translocación de Protón Mitocondriales/química , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Miocitos Cardíacos/metabolismo
7.
FEBS J ; 289(9): 2540-2561, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34796659

RESUMEN

Cardiovascular diseases are the leading cause of death globally and more than four out of five cases are due to ischemic events. Cardiac fibroblasts (CF) contribute to normal heart development and function, and produce the post-ischemic scar. Here, we characterize the biochemical and functional aspects related to CF endurance to ischemia-like conditions. Expression data mining showed that cultured human CF (HCF) express more BCL2 than pulmonary and dermal fibroblasts. In addition, gene set enrichment analysis showed overrepresentation of genes involved in the response to hypoxia and oxidative stress, respiration and Janus kinase (JAK)/Signal transducer and Activator of Transcription (STAT) signaling pathways in HCF. BCL2 sustained survival and proliferation of cultured rat CF, which also had higher respiration capacity and reactive oxygen species (ROS) production than pulmonary and dermal fibroblasts. This was associated with higher expression of the electron transport chain (ETC) and antioxidant enzymes. CF had high phosphorylation of JAK2 and its effectors STAT3 and STAT5, and their inhibition reduced viability and respiration, impaired ROS control and reduced the expression of BCL2, ETC complexes and antioxidant enzymes. Together, our results identify molecular and biochemical mechanisms conferring survival advantage to experimental ischemia in CF and show their control by the JAK2/STAT signaling pathway. The presented data point to potential targets for the regulation of cardiac fibrosis and also open the possibility of a general mechanism by which somatic cells required to acutely respond to ischemia are constitutively adapted to survive it.


Asunto(s)
Antioxidantes , Janus Quinasa 2 , Animales , Fibroblastos/metabolismo , Isquemia , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Respiración , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal
8.
JACC Basic Transl Sci ; 6(7): 567-580, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34368505

RESUMEN

In patients with a first anterior ST-segment elevation myocardial infarction treated with primary percutaneous coronary intervention, iron deficiency (ID) was associated with larger infarcts, more extensive microvascular obstruction, and higher frequency of adverse left ventricular remodeling as assessed by cardiac magnetic resonance imaging. In mice, an ID diet reduced the activity of the endothelial nitric oxide synthase/soluble guanylate cyclase/protein kinase G pathway in association with oxidative/nitrosative stress and increased infarct size after transient coronary occlusion. Iron supplementation or administration of an sGC activator before ischemia prevented the effects of the ID diet in mice. Not only iron excess, but also ID, may have deleterious effects in the setting of ischemia and reperfusion.

9.
Int J Mol Sci ; 22(8)2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923786

RESUMEN

Succinate dehydrogenase (SDH) inhibition with malonate during reperfusion reduced myocardial infarction in animals, whereas its endogenous substrate, succinate, is detected in plasma from STEMI patients. We investigated whether protection by SDH inhibition is additive to that of remote ischemic perconditioning (RIC) in pigs submitted to transient coronary artery occlusion, and whether protective maneuvers influence plasma levels of citric acid cycle metabolites. Forty pigs were submitted to 40 min coronary occlusion and reperfusion, and allocated to four groups (controls, sodium malonate 10 mmol/L, RIC, and malonate + RIC). Plasma was obtained from femoral and great cardiac veins and analyzed by LC-MS/MS. Malonate, RIC, and malonate + RIC reduced infarct size (24.67 ± 5.98, 25.29 ± 3.92 and 29.83 ± 4.62% vs. 46.47 ± 4.49% in controls, p < 0.05), but no additive effects were detected. Enhanced concentrations of succinate, fumarate, malate and citrate were observed in controls during initial reperfusion in the great cardiac vein, and most were reduced by cardioprotective maneuvers. Concentrations of succinate, fumarate, and malate significantly correlated with infarct size. In conclusion, despite the combination of SDH inhibition during reperfusion and RIC did not result in additive protection, plasma concentrations of selected citric acid cycle metabolites are attenuated by protective maneuvers, correlate with irreversible injury, and might become a prognosis tool in STEMI patients.


Asunto(s)
Ciclo del Ácido Cítrico , Oclusión Coronaria/metabolismo , Inhibidores Enzimáticos/uso terapéutico , Precondicionamiento Isquémico/métodos , Infarto del Miocardio/metabolismo , Succinato Deshidrogenasa/antagonistas & inhibidores , Animales , Biomarcadores/sangre , Biomarcadores/metabolismo , Oclusión Coronaria/patología , Oclusión Coronaria/terapia , Ácidos Dicarboxílicos/sangre , Ácidos Dicarboxílicos/metabolismo , Inhibidores Enzimáticos/farmacología , Corazón/efectos de los fármacos , Infarto del Miocardio/patología , Infarto del Miocardio/terapia , Miocardio/metabolismo , Porcinos
10.
Basic Res Cardiol ; 116(1): 4, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33495853

RESUMEN

Remote ischemic conditioning (RIC) and the GLP-1 analog exenatide activate different cardioprotective pathways and may have additive effects on infarct size (IS). Here, we aimed to assess the efficacy of RIC as compared with sham procedure, and of exenatide, as compared with placebo, and the interaction between both, to reduce IS in humans. We designed a two-by-two factorial, randomized controlled, blinded, multicenter, clinical trial. Patients with ST-segment elevation myocardial infarction receiving primary percutaneous coronary intervention (PPCI) within 6 h of symptoms were randomized to RIC or sham procedure and exenatide or matching placebo. The primary outcome was IS measured by late gadolinium enhancement in cardiac magnetic resonance performed 3-7 days after PPCI. The secondary outcomes were myocardial salvage index, transmurality index, left ventricular ejection fraction and relative microvascular obstruction volume. A total of 378 patients were randomly allocated, and after applying exclusion criteria, 222 patients were available for analysis. There were no significant interactions between the two randomization factors on the primary or secondary outcomes. IS was similar between groups for the RIC (24 ± 11.8% in the RIC group vs 23.7 ± 10.9% in the sham group, P = 0.827) and the exenatide hypotheses (25.1 ± 11.5% in the exenatide group vs 22.5 ± 10.9% in the placebo group, P = 0.092). There were no effects with either RIC or exenatide on the secondary outcomes. Unexpected adverse events or side effects of RIC and exenatide were not observed. In conclusion, neither RIC nor exenatide, or its combination, were able to reduce IS in STEMI patients when administered as an adjunct to PPCI.


Asunto(s)
Brazo/irrigación sanguínea , Exenatida/uso terapéutico , Incretinas/uso terapéutico , Precondicionamiento Isquémico , Miocardio/patología , Intervención Coronaria Percutánea , Infarto del Miocardio con Elevación del ST/terapia , Anciano , Terapia Combinada , Método Doble Ciego , Exenatida/efectos adversos , Femenino , Humanos , Incretinas/efectos adversos , Imagen por Resonancia Cinemagnética , Masculino , Persona de Mediana Edad , Intervención Coronaria Percutánea/efectos adversos , Estudios Prospectivos , Flujo Sanguíneo Regional , Infarto del Miocardio con Elevación del ST/diagnóstico por imagen , Infarto del Miocardio con Elevación del ST/patología , Infarto del Miocardio con Elevación del ST/fisiopatología , España , Factores de Tiempo , Resultado del Tratamiento , Función Ventricular Izquierda
11.
Int J Mol Sci ; 23(1)2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-35008601

RESUMEN

Information about heart failure with reduced ejection fraction (HFrEF) in women and the potential effects of aging in the female heart is scarce. We investigated the vulnerability to develop HFrEF in female elderly mice compared to young animals, as well as potential differences in reverse remodeling. First, HF was induced by isoproterenol infusion (30 mg/kg/day, 28 days) in young (10-week-old) and elderly (22-month-old) female mice. In a second set of animals, mice underwent isoproterenol infusion followed by no treatment during 28 additional days. Cardiac remodeling was assessed by echocardiography, histology and gene expression of collagen-I and collagen-III. Following isoproterenol infusion, elderly mice developed similar HFrEF features compared to young animals, except for greater cell hypertrophy and tissue fibrosis. After beta-adrenergic withdrawal, young female mice experienced complete reversal of the HFrEF phenotype. Conversely, reversed remodeling was impaired in elderly animals, with no significant recovery of LV ejection fraction, cardiomyocyte hypertrophy and collagen deposition. In conclusion, chronic isoproterenol infusion is a valid HF model for elderly and young female mice and induces a similar HF phenotype in both. Elderly animals, unlike young, show impaired reverse remodeling, with persistent tissue fibrosis and cardiac dysfunction even after beta-adrenergic withdrawal.


Asunto(s)
Envejecimiento , Modelos Animales de Enfermedad , Fibrosis , Insuficiencia Cardíaca/inducido químicamente , Isoproterenol/toxicidad , Animales , Cardiomiopatías , Colágeno/genética , Femenino , Regulación de la Expresión Génica , Insuficiencia Cardíaca/fisiopatología , Ratones , Ratones Endogámicos C57BL , Volumen Sistólico , Función Ventricular Izquierda , Remodelación Ventricular
12.
Elife ; 92020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-33063665

RESUMEN

Macrophages (Mφs) produce factors that participate in cardiac repair and remodeling after myocardial infarction (MI); however, how these factors crosstalk with other cell types mediating repair is not fully understood. Here we demonstrated that cardiac Mφs increased the expression of Mmp14 (MT1-MMP) 7 days post-MI. We selectively inactivated the Mmp14 gene in Mφs using a genetic strategy (Mmp14f/f:Lyz2-Cre). This conditional KO (MAC-Mmp14 KO) resulted in attenuated post-MI cardiac dysfunction, reduced fibrosis, and preserved cardiac capillary network. Mechanistically, we showed that MT1-MMP activates latent TGFß1 in Mφs, leading to paracrine SMAD2-mediated signaling in endothelial cells (ECs) and endothelial-to-mesenchymal transition (EndMT). Post-MI MAC-Mmp14 KO hearts contained fewer cells undergoing EndMT than their wild-type counterparts, and Mmp14-deficient Mφs showed a reduced ability to induce EndMT in co-cultures with ECs. Our results indicate the contribution of EndMT to cardiac fibrosis and adverse remodeling post-MI and identify Mφ MT1-MMP as a key regulator of this process.


Asunto(s)
Endotelio Vascular/metabolismo , Transición Epitelial-Mesenquimal , Macrófagos/metabolismo , Metaloproteinasa 14 de la Matriz/metabolismo , Infarto del Miocardio/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Colágeno/metabolismo , Modelos Animales de Enfermedad , Femenino , Fibrosis , Citometría de Flujo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microcirculación , Fenotipo , Daño por Reperfusión , Disfunción Ventricular Izquierda
13.
Biomolecules ; 10(4)2020 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-32340244

RESUMEN

Previous studies demonstrated a reduction in myocardial scar size in heterozygous Cx43+/- mice subjected to permanent coronary occlusion. However, patients presenting with ST segment elevation myocardial infarction often undergo rapid coronary revascularization leading to prompt restoration of coronary flow. Therefore, we aimed to assess changes in scar size and left ventricular remodeling following transient myocardial ischemia (45 min) followed by 14 days of reperfusion using Cx43fl/fl (controls) and Cx43Cre-ER(T)/fl inducible knock-out (Cx43 content: 50%) mice treated with vehicle or 4-hydroxytamoxifen (4-OHT) to induce a Cre-ER(T)-mediated global deletion of the Cx43 floxed allele. The scar area (picrosirius red), measured 14 days after transient coronary occlusion, was similarly reduced in both vehicle and 4-OHT-treated Cx43Cre-ER(T)/fl mice, compared to Cx43fl/fl animals, having normal Cx43 levels (15.78% ± 3.42% and 16.54% ± 2.31% vs. 25.40% ± 3.14% and 22.43% ± 3.88% in vehicle and 4-OHT-treated mice, respectively, p = 0.027). Left ventricular dilatation was significantly attenuated in both Cx43-deficient groups (p = 0.037 for left ventricular end-diastolic diameter). These protective effects were correlated with an attenuated enhancement in pro-transforming growth factor beta 1 (TGFß1) expression after reperfusion. In conclusion, our data demonstrate that Cx43 deficiency induces a protective effect on scar formation after transient coronary occlusion in mice, an effect associated with reduced left ventricular remodeling and attenuated enhancement in pro-TGFß1 expression.


Asunto(s)
Cicatriz/patología , Conexina 43/deficiencia , Oclusión Coronaria/metabolismo , Oclusión Coronaria/patología , Miocardio/patología , Transducción de Señal , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Biomarcadores/metabolismo , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Conexina 43/metabolismo , Oclusión Coronaria/diagnóstico por imagen , Oclusión Coronaria/fisiopatología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/metabolismo , Fosforilación , Proteínas Smad/metabolismo , Remodelación Ventricular
14.
EBioMedicine ; 48: 605-618, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31594751

RESUMEN

BACKGROUND: Identification of signaling pathways altered at early stages after cardiac ischemia/reperfusion (I/R) is crucial to develop timely therapies aimed at reducing I/R injury. The expression of G protein-coupled receptor kinase 2 (GRK2), a key signaling hub, is up-regulated in the long-term in patients and in experimental models of heart failure. However, whether GRK2 levels change at early time points following myocardial I/R and its functional impact during this period remain to be established. METHODS: We have investigated the temporal changes of GRK2 expression and their potential relationships with the cardioprotective AKT pathway in isolated rat hearts and porcine preclinical models of I/R. FINDINGS: Contrary to the maladaptive up-regulation of GRK2 reported at later times after myocardial infarction, successive GRK2 phosphorylation at specific sites during ischemia and early reperfusion elicits GRK2 degradation by the proteasome and calpains, respectively, thus keeping GRK2 levels low during early I/R in rat hearts. Concurrently, I/R promotes decay of the prolyl-isomerase Pin1, a positive regulator of AKT stability, and a marked loss of total AKT protein, resulting in an overall decreased activity of this pro-survival pathway. A similar pattern of concomitant down-modulation of GRK2/AKT/Pin1 protein levels in early I/R was observed in pig hearts. Calpain and proteasome inhibition prevents GRK2/Pin1/AKT degradation, restores bulk AKT pathway activity and attenuates myocardial I/R injury in isolated rat hearts. INTERPRETATION: Preventing transient degradation of GRK2 and AKT during early I/R might improve the potential of endogenous cardioprotection mechanisms and of conditioning strategies.


Asunto(s)
Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Biomarcadores , Células Cultivadas , Modelos Animales de Enfermedad , Masculino , Modelos Biológicos , Isquemia Miocárdica/etiología , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patología , Daño por Reperfusión Miocárdica/patología , Oxidación-Reducción , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Ratas , Porcinos
15.
J Mol Cell Cardiol ; 133: 164-173, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31194987

RESUMEN

Reports on the effect of obesity on the myocardial tolerance to ischemia are contradictory. We have described that obesity induced by high-fat diet (HFD) reduces infarct size in B6D2F1 mice submitted to transient coronary occlusion. In this study, we analysed the mechanism by which dietary obesity modifies the susceptibility to myocardial ischemia and the robustness of this effect. B6D2F1 (BDF), C57BL6/J (6J), C57BL6/N (6N) male mice and BDF female mice were fed with a HFD or control diet for 16 weeks. In all three strains, HFD induced obesity with hyperinsulinemia and hypercholesterolemia and without hyperglycemia, hypertension, ventricular remodelling or cardiac dysfunction. In obese mice from all three strains PDK4 was overexpressed and HSQC NMR spectroscopy showed reduced 13C-glutamate and increased 13C-lactate and 13C-alanine, indicating uncoupling of glycolysis from glucose oxidation. In addition, HFD induced mild respiratory uncoupling in mitochondria from BDF and 6N mice in correlation with UCP3 overexpression. In studies performed in isolated perfused hearts submitted to transient ischemia these changes were associated with reduced ATP content and myocardial PCr/ATP ratio at baseline, and delayed pHi recovery (31PNMR) and attenuated hypercontracture at the onset of reperfusion. Finally, in mice subjected to 45 min of coronary occlusion and 24 h of reperfusion, HFD significantly reduced infarct size respect to their respective control diet groups in male BDF (39.4 ±â€¯6.1% vs. 19.9 ±â€¯3.2%, P = 0.018) and 6N mice (38.0 ±â€¯4.1 vs. 24.5 ±â€¯2.6%, P = 0.017), and in female BDF mice (35.3 ±â€¯4.4% vs. 22.3 ±â€¯2.5%, P = 0.029), but not in male 6J mice (40.2 ±â€¯3.4% vs. 34.1 ±â€¯3.8%, P = 0.175). Our results indicate that the protective effect of HFD-induced obesity against myocardial ischemia/reperfusion injury is influenced by genetic background and appears to critically depend on inhibition of glucose oxidation and mild respiratory mitochondrial uncoupling resulting in prolongation of acidosis at the onset of reperfusion.


Asunto(s)
Adaptación Fisiológica , Dieta Alta en Grasa , Metabolismo Energético , Isquemia Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Animales , Modelos Animales de Enfermedad , Ecocardiografía , Femenino , Glucosa/metabolismo , Concentración de Iones de Hidrógeno , Espacio Intracelular/metabolismo , Espectroscopía de Resonancia Magnética , Masculino , Metaboloma , Metabolómica/métodos , Ratones , Mitocondrias Cardíacas/metabolismo , Isquemia Miocárdica/diagnóstico , Daño por Reperfusión Miocárdica/diagnóstico , Obesidad/metabolismo , Oxidación-Reducción
16.
Basic Res Cardiol ; 114(3): 21, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30915659

RESUMEN

Inhibition of the Ca2+-dependent proteases calpains attenuates post-infarction remodeling and heart failure. Recent data suggest that calpain activity is elevated in non-ischemic cardiomyopathies and that upregulation of the key cardiac G-protein-coupled receptor kinase 2 (GRK2) signaling hub promotes cardiac hypertrophy. However, the functional interactions between calpains and GRK2 in this context have not been explored. We hypothesized that calpain modulates GRK2 levels in myocardial hypertrophy of non-ischemic cause, and analyzed the mechanisms involved and the potential therapeutic benefit of inhibiting calpain activity in this situation. The oral calpain inhibitor SNJ-1945 was administered daily to male Sprague-Dawley rats or wild-type and hemizygous GRK2 mice treated with 5 mg/Kg/day isoproterenol intraperitoneally for 1 week. In isoproterenol-treated animals, calpains 1 and 2 were overexpressed in myocardium and correlated with increased calpain activity and ventricular hypertrophy. Oral co-administration of SNJ-1945 attenuated calpain activation and reduced heart hypertrophy as assessed using morphological and biochemical markers. Calpain activation induced by isoproterenol increased GRK2 protein levels, while genetic downregulation of GRK2 expression prevented isoproterenol-mediated hypertrophy independently of calpain inhibition. GRK2 upregulation was associated to calpain-dependent degradation of the GRK2 ubiquitin ligase MDM2 and to enhanced NF-κB-dependent GRK2 gene expression in correlation with calpain-mediated IĸB proteolysis. These results demonstrate that calpain mediates isoproterenol-induced myocardial hypertrophy by modulating GRK2 protein content through mechanisms involving the control of GRK2 stability and expression. Sustained calpain inhibition attenuates isoproterenol-induced myocardial hypertrophy and could be an effective therapeutic strategy to limit ventricular remodeling of non-ischemic origin.


Asunto(s)
Calpaína/metabolismo , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Hipertrofia Ventricular Izquierda/metabolismo , Miocardio/metabolismo , Receptores Adrenérgicos beta/metabolismo , Animales , Carbamatos , Modelos Animales de Enfermedad , Hipertrofia Ventricular Izquierda/inducido químicamente , Isoproterenol , Masculino , Ratas Sprague-Dawley , Regulación hacia Arriba
17.
Prog Biophys Mol Biol ; 130(Pt B): 387-393, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28579517

RESUMEN

Wall stress may favor ischemic ventricular arrhythmias, yet its association with ventricular fibrillation (VF) or ventricular ectopy has been inconsistent among studies and its potential arrhythmogenicity across the cardiac cycle is unclear. In 91 open-chest pigs undergoing 40-50 min left anterior descending artery occlusion, we assessed the association between diastolic or systolic distension of the ischemic area and the incidence of ventricular premature beats (VPBs) and VF. End-diastolic segment length (EDL) and systolic bulging ([maximum systolic length-EDL] × 100/EDL) were measured by ultrasonic crystals. Fifteen minutes after occlusion, EDL increased to 112.7 ± 5.6% of baseline (P < 0.001) and systolic bulging averaged 3.4 ± 2.2%. Median VPB number was 52 (IQR, 16-110), 2 (0-7) in phase Ia and 49 (13-94) in phase Ib. VF occurred in 26 animals (28.6%), the first episode appearing 24 ± 6 min after occlusion. EDL increase was associated with subsequent VF (115.9 ± 5.7 and 111.4 ± 5.1% in animals with and without VF, P < 0.001) and with the number of VF episodes (P = 0.001) but not with VPB number, overall (r = 0.028, P = 0.801) or in phases Ia or Ib. Systolic bulging was related neither to VF occurrence (3.2 ± 2.2 and 3.5 ± 2.2%, respectively, P = 0.561) nor to VBP number (r = 0.095, P = 0.397). EDL increase predicted VF after adjusting for ischemic area size and K+ levels (odds ratio for 1% increase: 1.17, 95%CI 1.06-1.29, P = 0.001). Thus, diastolic regional ventricular distension predicts VF occurrence after coronary occlusion whereas neither diastolic nor systolic distension is associated with ventricular ectopy, which suggests that distension favors VF by acting on the arrhythmic substrate but not on arrhythmia triggers.


Asunto(s)
Oclusión Coronaria/complicaciones , Vasos Coronarios/patología , Fibrilación Ventricular/complicaciones , Fibrilación Ventricular/patología , Animales , Arritmias Cardíacas/complicaciones , Vasos Coronarios/fisiopatología , Susceptibilidad a Enfermedades , Femenino , Hemodinámica , Masculino , Potasio/metabolismo , Porcinos , Fibrilación Ventricular/metabolismo , Fibrilación Ventricular/fisiopatología
18.
Cardiovasc Res ; 113(8): 950-961, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28460013

RESUMEN

Calpains activate during myocardial ischemia-reperfusion and contribute to reperfusion injury. Studies in transgenic animals with altered calpain/calpastatin system subjected to permanent ischemia suggest that calpains are also involved in post-infarction remodelling and heart failure. AIMS: To determine whether delayed oral administration of the calpain inhibitor SNJ-1945 reduces adverse myocardial remodelling and dysfunction following transient coronary occlusion. METHODS AND RESULTS: Male Sprague-Dawley rats were subjected to 30 min of ischemia followed by 21 days of reperfusion and received the calpain inhibitor SNJ-1945 intraperitoneally at the onset of reperfusion (Acute group), orally starting after 24 h of reperfusion and for 14 days (Chronic group), or the combination of both treatments. Calpain-1 and calpain-2 protein content increased and correlated with higher calpain activity in control hearts. Administration of SNJ-1945 attenuated calpain activation, and reduced scar expansion, ventricular dilation and dysfunction in both acute and chronic groups. Acute treatment reduced infarct size in hearts reperfused for 24 h and inflammation measured after 3 days. Delayed, chronic oral administration of SNJ-1945 attenuated inflammation, cardiomyocyte hypertrophy and collagen infiltration in the non-infarcted myocardium at 21 days in correlation with increased levels of IĸB and reduced NF-ĸB activation. In cultured fibroblasts, SNJ-1945 attenuated TGF-ß1-induced fibroblast activation. CONCLUSIONS: Our data demonstrate for the first time that long-term calpain inhibition is possible with delayed oral treatment, attenuates adverse post-infarction remodelling, likely through prevention of NF-ĸB activation, and may be a promising therapeutic intervention to prevent adverse remodelling and heart failure in patients with acute myocardial infarction.


Asunto(s)
Calpaína/antagonistas & inhibidores , Carbamatos/farmacología , Glicoproteínas/farmacología , Infarto del Miocardio/tratamiento farmacológico , Daño por Reperfusión Miocárdica/prevención & control , Miocardio/metabolismo , Animales , Proteínas de Unión al Calcio/efectos de los fármacos , Proteínas de Unión al Calcio/metabolismo , Calpaína/metabolismo , Carbamatos/administración & dosificación , Glicoproteínas/administración & dosificación , Corazón/efectos de los fármacos , Corazón/fisiopatología , Masculino , Infarto del Miocardio/metabolismo , Ratas Sprague-Dawley
19.
J Am Heart Assoc ; 5(12)2016 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-27988498

RESUMEN

BACKGROUND: Edema is present in many heart diseases, and differentiation between intracellular (ICW) and extracellular (ECW) myocardial water compartments would be clinically relevant. In this work we developed a magnetic resonance imaging-based method to differentiate ICW and ECW and applied it to analyze ischemia-reperfusion-induced edema. METHODS AND RESULTS: Isolated rat hearts were perfused with gadolinium chelates as a marker of extracellular space. Total water content was measured by desiccation. Gadolinium quantification provided ECW, and ICW was calculated by subtraction of ECW from total water content. In separate experiments, T1, T2, diffusion-weighted imaging and proton-density parameters were measured in isolated saline-perfused hearts. In in-situ rat hearts, ECW and ICW were 79±10 mL and 257±8 mL of water per 100 g of dry tissue, respectively. After perfusion for 40 minutes, ECW increased by 92.4±3% without modifying ICW (-1±3%). Hyposmotic buffer (248 mOsm/L) increased ICW by 16.7±2%, while hyperosmotic perfusion (409 mOsm/L) reduced ICW by 26.5±3%. Preclinical imaging showed good correlation between T2 and diffusion-weighted imaging with ECW, and proton-density correlated with total water content. Ischemia-reperfusion resulted in marked myocardial edema at the expense of ECW, because of cellular membrane rupture. When cell death was prevented by blebbistatin, water content and distribution were similar to normoxic perfused hearts. Furthermore, attenuation of intracellular edema with hyperosmotic buffer reduced cell death. CONCLUSIONS: We devised a method to determine edema and tissue water distribution. This method allowed us to demonstrate a role of edema in reperfusion-induced cell death and could serve as a basis for the study of myocardial water distribution using magnetic resonance imaging.


Asunto(s)
Agua Corporal/química , Edema Cardíaco/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Análisis de Varianza , Animales , Muerte Celular/fisiología , Espacio Extracelular/química , Espacio Intracelular/química , Angiografía por Resonancia Magnética , Masculino , Concentración Osmolar , Compuestos de Potasio/farmacología , Ratas Sprague-Dawley
20.
Heliyon ; 2(10): e00182, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27830194

RESUMEN

AIMS: Parathyroid hormone-related protein (PTHrP) is involved in lung development and surfactant production. The latter one requires a paracrine interaction between type II alveolar cells and lipofibroblasts in which leptin triggers PTHrP-induced effects. Whether increased plasma leptin levels, as they occur in high fat diet, modify the expression of PTHrP remains unclear. Furthermore, the effect of high fat diet under conditions of forced pulmonary remodelling such as response to post myocardial infarction remains to be defined. MATERIALS AND METHODS: C57 bl/6 mice were randomized to either normal diet or high fat diet at an age of 6 weeks. Seven months later, the mice were euthanized and the lung was removed and frozen in fluid nitrogen until use. Samples were analyzed by real-time RT-PCR and western blot. Leptin deficient mice were used to investigate the effect of leptin on pulmonary expression of PTHrP more directly. A subgroup of mice with and without high fat diet underwent in vivo ischemia (45 min) and reperfusion (4 weeks). Finally, experiments were repeated with prolonged high-fat diet. KEY FINDINGS: High fat diet increased plasma leptin levels by 30.4% and the pulmonary mRNA expression of PTHrP (1,447-fold), PTH-1 receptor (4.21-fold), and PTHrP-downstream targets ADRP (7.54-fold) and PPARγ (5.27-fold). Pulmonary PTHrP expression was reduced in leptin deficient mice by 88% indicating leptin dependent regulation. High fat diet further improved changes in pulmonary adaptation caused by ischemia/reperfusion (1.48-fold increased PTH-1 receptor protein expression). These effects were lost during prolonged high fat diet. SIGNIFICANCE: This study established that physiological regulation of leptin plasma levels by high fat diet affects the pulmonary PTHrP expression and of PTHrP downstream targets. Modification of pulmonary expression of PTH-1 receptors by high fat diet after myocardial infarction suggests that the identified interaction may participate in the obesity paradox.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA